Trong bài viết này, tôi sẽ giới thiệu với các bạn về cách lập trình với con trỏ (pointer) trong việc cấp phát bộ nhớ động (dynamic memory alocation) bằng ngôn ngữ C++. Đối với các bạn đã có kinh nghiệm lập trình với C++ thì bài này đối với các bạn chỉ là "a-bờ-cờ" mà thôi. Nhưng với các bạn mới học C++ thì có lẽ là bổ ích.Nếu bạn mới học lập trình và làm quen với cấu trúc dữ liệu thì một trong số những cấu trúc dữ liệu đầu tiên mà bạn "rớ" tới là Stack (ngăn xếp) và Queue (hàng đợi). Bạn có thể dùng 1 mảng (array) để thiết kế Stack và Queue. Dùng mảng thì đơn giản, nhưng bạn sẽ gặp một số bất lợi như sau:
- Lãng phí bộ nhớ: giả sử bạn khai báo int array_entry[100] thì bạn sẽ có 1 vùng nhớ cho 100 phần tử, nhưng nếu chương trình của bạn chỉ thường xuyên dùng có 10 phần tử, và 1 vài lần là dùng đến 100 phần tử thì tức là bạn đã phí phạm 90 phần tử.
- Thiếu bộ nhớ: vì tiết kiệm, bạn chỉ khai báo int array_entry[10], nhưng nếu bạn cần dùng đến 15 phần tử thì...overflow ngay. Chưa hết, array cần một vùng nhớ liên tục, giả sử máy bạn vẫn còn nhiều bộ nhớ trống, nhưng không có vùng nhớ trống liên tục nào đủ lớn cho mảng của bạn. Thế là vẫn...thiếu bộ nhớ.
- Và cuối cùng, người ta khi thấy bạn viết như vậy thì coi bạn là dân amateur, buồn nhỉ? L
struct Node { // data members Node_entry entry; Node °next; //constructors Node(); Node(Node_entry item, Node °add_on = NULL);};Ghi chú: Node_entry là kiểu dữ liệu để chứa data của phần tử, entry chính là nơi data của phần tử được lưu. Ở ví dụ trong hình trên, với node đầu tiên thì entry sẽ chứa Fred, 367-2205 và Jan. 28.Và ta có các hàm khởi tạo cho nó như sau:
Node::Node(){ next = NULL;}Node::Node(Node_entry item, Node °add_on){ entry = item; next = add_on;}Như vậy, khi ta khai báo Node° data và khởi tạo xong cho data thì data->entry sẽ là phần dữ liệu của node đó, và data->next sẽ là đường dẫn tới node tiếp theo. Như thế thì ta có thể duyệt hết toàn bộ data mà ta đã lưu trong danh sách rồi. Để rõ hơn, ta hãy xem một ví dụ qua đoạn code nhỏ sau. Chú ý: khi data->next == NULL thì tức là node này là phần tử cuối cùng.Đoạn code trong ví dụ sẽ tạo ra một danh sách liên kết như trong hình trên (không tin thì bạn...thử xem là biết liền J). Địa chỉ bộ nhớ của các node thì hoàn toàn ngẫu nhiên và không liên tục vì nó là dynamic memory allocation mà.Thế là đã Ok cho việc tạo một cấu trúc liên kết. Giờ ta bắt tay vào xây dựng Linked Stack và Linked Queue. Tôi sẽ trình bày phần Linked Stack thôi, phần Linked Queue thì các bạn hãy phát triển thêm nhé. Cũng hoàn toàn tương tự thôi.Ta khai báo Stack như sau:
enum Error_code {underflow, success, overflow};typedef int Stack_entry;class Stack {public: Stack(); Bool empty() const; Stack_entry push(const Stack_entry &item); Stack_entry top(Stack_entry &item) const; Error_code pop(); protected: Node °top_node;}Sau đó là các đoạn code cho các hàm trong Stack như sau:
Stack_entry Stack::push(const Stack_entry &item){ Node °new_top = new Node(item, top_node); if (new_top == NULL) return 0; top_node = new_top; return item;}Error_code Stack::pop(){ Node °old_top = top_node; if (top_node == NULL) return underflow; top_node = old_top->next ; delete old_top; count--; return success;}Stack_entry Stack::top(Stack_entry &item) const{ if (top_node == NULL) return 0; item = top_node->entry; return item;}bool Stack::empty() const{ if (top_node == NULL) return true; return false;}Stack::Stack(){ top_node = NULL; count = 0;}Như thế đó, ta đã có 1 Linked Stack mà không dùng array. Dữ liệu được nhập vào tới đâu thì bộ nhớ được cấp phát tới đó. Và khi dữ liệu được lấy ra khỏi stack thì phần bộ nhớ của nó được giải phóng ngay lập tức, để dành cho việc khác.Các bạn tự nghiên cứu phần Queue nhé! Nếu bạn muốn ngâm cứu bản gốc (tiếng Anh) thì bạn có thể email cho tôi: batanlp@hotmail.com.